If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-4x-1868=0
a = 1; b = -4; c = -1868;
Δ = b2-4ac
Δ = -42-4·1·(-1868)
Δ = 7488
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7488}=\sqrt{576*13}=\sqrt{576}*\sqrt{13}=24\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-24\sqrt{13}}{2*1}=\frac{4-24\sqrt{13}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+24\sqrt{13}}{2*1}=\frac{4+24\sqrt{13}}{2} $
| -6(-1+4r)=-138 | | (180-(3x-56)-(x+7))+(9x-249)=180 | | 10x+6=3(3x+2) | | 3x^2-5x-68=0 | | 2/g=-8 | | 6x-5+3=6×-2 | | 13+6x=4x-1 | | -(3x-5)-(11x-6)+4=-4(x-1)-(13x+4)+3 | | x/5-x/2=3+3x/10 | | a(-1)^3-3=0 | | 16+3p=2/3p=5 | | 3×y+2=2y×16 | | -3k+1=-14 | | a(-1)^3=3 | | x^2+34x-111=0 | | x-12=(-6) | | 7x-13-2x=9x-6 | | 16x=3x+26 | | 5x-2(x-2)=3(x+1)+5 | | -3(-4-6y)=7(-y+5)=-8 | | 8x-28=5x+8 | | 2.4y=13.92 | | -1/6(y+1/6)=2/3(y+1/6) | | g÷3+11=25 | | 8x+2=3(7-2x-4) | | 4+x=1.5x | | x^2+120x-17800=0 | | 3(x^2+120x-17800)=0 | | 2(x+9)+7=2x+7 | | 12.11x-10.5=75.6-3.5x | | x/2=(-5) | | 3(4x-15)=12x-15 |